
Distrib. Comput. (2018) 31:503–513
https://doi.org/10.1007/s00446-017-0312-4

Breaking the log n barrier on rumor spreading

Chen Avin1 · Robert Elsässer2

Received: 22 January 2015 / Accepted: 7 September 2017 / Published online: 15 September 2017
© Springer-Verlag GmbH Germany 2017

Abstract O(log n) rounds has been a well known upper
bound for rumor spreading using push&pull in the ran-
dom phone call model (i.e., uniform gossip in the complete
graph). A matching lower bound of Ω(log n) is also known
for this special case. Under the assumption of this model and
with a natural addition that nodes can call a partner once
they learn its address (e.g., its IP address) we present a new
distributed, address-oblivious and robust algorithm that uses
push&pull with pointer jumping to spread a rumor to all
nodes in only O(

√
log n) rounds, w.h.p. This algorithm can

also cope with F = O(n/2
√
log n) node failures, in which

case all but O(F) nodes become informedwithin O(
√
log n)

rounds, w.h.p.

Keywords Rumor spreading · Gossip algorithms · Random
phone call · Push & pull

An extended abstract of this work appeared in [1]. The work of the
second author was partially supported by the Austrian Science Fund
(FWF) under contract P25214-N23 “Analysis of Epidemic Processes
and Algorithms in Large Networks”. The main result of this paper
solves an open problem presented at Dagstuhl Seminar 13042
“Epidemic Algorithms and Processes: From Theory to Applications”.

B Chen Avin
avin@cse.bgu.ac.il

Robert Elsässer
elsa@cosy.sbg.ac.at

1 Communication Systems Engineering, Ben Gurion University
of the Negev, Beer-Sheva, Israel

2 Department of Computer Sciences, University of Salzburg,
Salzburg, Austria

1 Introduction

Gossiping, or rumor-spreading, is a simple stochastic pro-
cess for dissemination of information across a network. In
a round of gossip, each node chooses a single, usually ran-
dom, neighbor as its communication partner according to a
gossip algorithm (e.g., selecting a random neighbor). Once
a partner is chosen the node calls its partner and a limited
amount of data is transferred between the partners, as defined
by the gossip protocol. Three basic actions are considered in
the literature: either the caller pushes information to its part-
ner (push), pulls information from the partner (pull), or
does both (push&pull). In the most basic information dis-
semination task, a token or a rumor in placed arbitrary in the
network and we are interested in the number of rounds and
message transmissions until all nodes in the network receive
the rumor. The selection of the protocol can lead to signif-
icant differences in the performance. Take for example the
star graph, let nodes call a neighbor selected uniformly at
random and assume the rumor is placed at one of the leafs.
It is easy to see that both push and pull will require ω(n)

rounds to complete the spreading of a single rumor while
push&pull will take only two rounds.

Somewhat surprisingly, but by now well understood, ran-
domized rumor-spreading turned out to be very efficient in
terms of time and message complexity while keeping robust-
ness to failures [13,23]. In addition, this type of algorithms
are very simple and distributed in nature so it is clearwhygos-
sip protocols have gained popularity in recent years and have
found many applications both in communication networks
and social networks. To name a few examples: updating a
database replicated at many sites [9,23], resource discov-
ery [22], computation of aggregate information [24], multi-
cast via network coding [8], membership services [19], or
the spread of influence and gossip in social networks [6,25].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-017-0312-4&domain=pdf
http://orcid.org/0000-0002-6647-8002

504 C. Avin, R. Elsässer

In this paper we consider the most basic scenario, the
random phone call model [23], where the underlying net-
work is the complete graph and nodes can call a random
neighbor according to some given distribution. In addi-
tion, the model requires the algorithm to be distributed and
address-oblivious: it cannot use the address of the current
communication partners to determine its state (for an exact
definition see Sect. 2). For example this setting fits well to
applications which require communication over the internet
such as peer-to-peer protocols and database synchronization.
A node can pick and call any (random or given) neighbor via
its IP address, but it is desired to keep the algorithm address-
oblivious otherwise it may have critical points of failure. For
example agreeing beforehand on a leader to contact (by its
IP address) is not an address-oblivious algorithm. Further-
more, such a protocol is also highly fragile, although it leads
to efficient information spreading (as pointed out in the star
graph example above).

The random phone call model was thoroughly studied
in the literature starting with the work of Frieze and Gim-
met [17] and following by Pittel [33] who proved an upper
bound of O(log n) rounds for push in the complete graph.
Demers et al. [9] considered both push and pull as a
simple and decentralized way to disseminate information
in a network and studied their rate of progress. Finally,
Karp et al. [23] gave a detailed analysis for this model.
They used push&pull to optimize the message complex-
ity and showed the robustness of the scheme. They proved
that, while using only push the communication overhead
is Ω(n log n), their algorithm only requires O(n log log n)

message transmissions by having a running time of O(log n),
even under arbitrary oblivious failures.Moreover they proved
that any address-oblivious algorithm (that selects neighbors
uniformly at random) will require Ω(n log log n) message
transmissions.

1.1 Our contribution

We are given a complete graph, in which the nodes act in
synchronous rounds. We consider the same assumptions as
in the random phone call model: the algorithm needs to be
distributed, address-oblivious and it can select neighbors at
random. In addition we use the fact that if an address of a
node u (e.g., its IP address) is known by some other node v,
then v can call directly on the address of u.

This slight addition leads to a significant improvement
in the running time (i.e., the number of rounds to spread a
message of a node to all other nodes in the network) from
O(log n) to O(

√
log n), w.h.p., but still keeps the algorithm

robust. Furthermore, a nodemay fail (at the beginning or dur-
ing the algorithm is executed) with probability O(1/2

√
log n),

independently. The main result of the paper also deals with
the so called bit communication complexity, i.e., the number

of bits sent over the edges of the network during the execution
of the algorithm.

Theorem 1 At the end of the algorithm Jumping–Push–Pull
(JPP), all but O(F) nodes are informed w.h.p.,1 where F
is the number of failed nodes (as described above). The
algorithm has running time O(

√
log n) and produces a bit

communication complexity of O(n(log3/2 n + b · log log n)),
w.h.p., where b is the bit length of the message.

Clearly, if there are no failures (i.e., F = 0), then all nodes
become informed in the number of rounds given in Theo-
rem 1. As mentioned, we inform all nodes in O(

√
log n)

rounds vs. O(log n) rounds achieved by the algorithm of
Karp et al. Our message complexity is O(n

√
log n) com-

pared to O(n log log n) and if the rumor is of bit length

b = Ω(
log3/2 n
log log n) both of the algorithms bit complexity is

Ω(b · n log log n). Moreover, if there are Ω(n) messages
to be distributed in the network, then the first term in the
expression describing the bit communication complexity is
amortized over the total number of message transmissions
(cf. [23]), and we obtain the same communication overhead
as in [23].

Few words on the basic idea of the algorithm are in
place. In a nutshell our approach has two phases: first we
build an infrastructure, a virtual topology, that is efficient for
push&pull. Second, we perform a simple push&pull
on the virtual topology. The running time is the combina-
tion of both these tasks. For example, constructing a random
star would be preferable since the second phase will then
take only a constant number of rounds, but as it turns out the
cost of the first phase, in this case, is too high. Interestingly,
our algorithm results in balancing these two phases where
each task requires O(

√
log n) rounds. Instead of a star with

a single leader we build a virtual topology with about ran-
dom n/2

√
log n leaders and each leader is connected to about

2
√
log n nodeswe call connectors (a node is either a leader or a

connector). Each connector is then linked to two leaders after
a process of pointer jumping [28] . This simple 2-level hierar-
chy results in a very efficient information spreading. Leaders
are a source of fast pull mechanism and connectors are
essential for fast spreading among leaders using push. Our
approach was motivated by similar phenomena in social net-
works [2,16] (see the relatedwork section for amore detailed
description of these results).
Journal version update Motivated by the conference version
of this paper [1], Haeupler and Malkhi [21] improved our
bound and presented an elegant algorithm that solves the
problem we study here in O(log log n) rounds together with
a matching lower bound. Nevertheless we think our work

1 In this paper with high probably or w.h.p. is with probability at least
1 − n−1−Ω(1).

123

Breaking the log n barrier on rumor spreading 505

contributes to the understanding of the gossiping process and
may be useful in extending the model to general graphs.

2 Preliminaries—rumor spreading

Let G(V, E) be an undirected graph, with V the set of nodes
and E the set of edges. Let n = |V | and m = |E |. For v ∈ V ,
let N (v) = {u ∈ V | (vu) ∈ E} the set of neighbors of v

and d(v) = |N (v)| the degree of v. Initially a single arbi-
trary node holds a rumor (i.e., a token) of size b bits; then the
process of rumor-spreading (or gossiping) progresses in syn-
chronous rounds. At each round, each node v selects a single
communication partner, u ∈ N (v) from its neighbors and v

calls u. The method by which v choses u is called the gossip
algorithm. The algorithm is called address-oblivious if v’s
state in round t does not depend on the addresses of its com-
munication partners at time t . Meaning, any decision about
if, how and what to send in the current round is made before
the current round. Nevertheless, v’s state can still depend on
the addresses of its communication partners from previous
rounds [23].

Randomized gossip is maybe the most basic address-
oblivious algorithm, in particular, when the communication
partners are selected uniformly at random the process is
known as uniform gossip. A well studied such case is the
random phone call model [23] where G is the complete
graph and u is selected u.a.r from V \ {v}. Upon selecting a
communication partner the gossip protocol defines the way
and which information is transferred between v and u. Three
basic options are considered to deliver information between
communication partners: push, pull and push&pull. In
push the calling node, v, sends a message to the called node
u, in pull amessage is only transferred the other way (if the
called node, u, has what to send) and in push&pull each
of the communication partners sends a message to the node
at the other end of the edge. The content of the messages is
defined by the protocol and can contain only the rumor (in
the simplest case) or additional information like counters or
state information (e.g., like in [23]).

After selecting the graph (or graph model), the gossip
algorithm and protocol, the main metrics of interest are the
dissemination time and the message complexity. Namely
how many rounds and messages are needed until all vertices
are informed2 (on average or with high probability), even
under node failures. The bit complexity is also a metric of
interest and counts the total number of bits sent during the
dissemination time. This quantity is a bit more involved since
it depends also on b (the size of the rumor) and messages at
different phases of the algorithms may have different sizes.

2 A call, in which no data is sent (e.g., the rumor, or a pointer), is not
considered as a message.

A pointer jumping is a classical operation from parallel
algorithm design [28] where the destination of your next
round pointer is the pointer at which your current pointer
points to. Our algorithm uses pointer jumping by sending the
addresses (i.e., pointers) of previous communication partners
to current partners (see Sect. 4 for a detailed description).

3 Related work

Besides the basic random phone call model, gossip algo-
rithms and rumor spreading were generalized in several
different ways. The basic extension was to study uniform
gossip (i.e., the called partner is selected uniformly at ran-
dom from the neighbors lists) on graphs other than the clique.
Feige et al. [15] studied randomized broadcast in networks
and extended the result of O(log n) rounds for push to dif-
ferent types of graphs like hypercubes and random graphs
models. Following the work of Karp et al. [23], and in par-
ticular in recent years the push&pull protocol was studied
intensively, both to give tight bounds for general graphs and to
understand its performance advantages on specific families
of graphs. A lower bound of Ω(log n) for uniform gossip
on the clique can be concluded from [35] that studies the
sequential case. We are not aware of a lower bound for gen-
eral, address-oblivious push&pull.

Recently Giakkoupis [18] proved an upper bound for gen-
eral graphs as a function of the conductance, φ, of the graph,
which is O(φ−1 log n) rounds. Since the conductance is at
most a constant, this bound cannot lead to a value of o(log n),
but is tight for many graphs. Doerr et al. [10] studied infor-
mation spreading on a known model of social networks and
showed for the first time an upper bound which is o(log n)

for a family of natural graphs. They proved that while uni-
form gossip with push&pull results in Θ(log n) rounds in
preferential attachment graphs, a slightly improved version
where nodes are not allowed to repeat their last call results
in a spreading time of O(

log n
log log n). A similar idea was pre-

viously used in [3,14] to reduce the message complexity of
push&pull in random graphs. Fountoulakis et al. [16] con-
sidered spreading a rumor to all but a small ε-fraction of the
population. For random power law graphs [7] they proved
that push&pull informs all but an ε-fraction of the nodes
in O(log log n) rounds. Their proof relies on the existence of
many connectors (i.e., nodes with low degree connected to
high degree nodes) which amplify the spread of the rumor
between high degree nodes, and this influenced our approach;
in some sense our algorithm tries to imitate the structure of
the social network they studied.

Another line of research was to study push&pull (as
well as push and pull separately) but not under the uni-
formgossipmodel. Censor-Hillel et al. [5], gave an algorithm
for all-to-all dissemination in arbitrary graphs which elim-

123

506 C. Avin, R. Elsässer

inates the dependency on the conductance. For unlimited
message sizes (essentially you can send everything you
know), their randomized algorithm informs all nodes in
O(D + polylog(n)) rounds where D is the graph diame-
ter; clearly this is tight for many graphs. Quasirandom rumor
spreadingwas first offered byDoerr et al. [11,12] and showed
to outperform the randomized algorithms in some cases (see
also [4] for a studyof themessage complexity of quasirandom
rumor spreading). Most recently Haeupler [20] proposed a
completely deterministic algorithm that spreads a rumorwith
2(D + log n) log n rounds (but also requires unlimited mes-
sage size).

In a somewhat different model (but similar to ours), where
nodes can contact any address as soon as they learn about it,
Harchol-Balter et al. [22] considered the problem of resource
discovery (i.e., learning about all nodes in the graph) start-
ing from an arbitrary graph. They used a form of one hop
pointer jumping with push&pull and gave an upper bound
of O(log2 n)rounds for their algorithm. In [26,27] resource
discovery in both–the deterministic and the asynchronous
case–were studied and improved bounds were presented.

The idea of first building a virtual structure (i.e.; topology
control) and then do gossip on top of this structure is not novel
and a similar idea was presented by Melamed and Keidar
[31].

Another source of influence to our work was the work on
pointer jumping with push&pull in the context of efficient
construction of peer-to-peer networks [30] and on computing
minimum spanning tress [29].

4 Jumping–push–pull in O(
√
log n)-time

First, we present the algorithm, which disseminates a rumor
bypush&pull in O(

√
log n) time, w.h.p. Then, we analyze

our algorithm, show its corectness, and prove the runtime
bound.

4.1 Algorithm—rumor spreading with pointer jumping

First, we provide a high-level overview of our algorithm. At
the beginning, a message resides on one of the nodes, and the
goal is to distribute this message (or rumor) to every node in
the network. We assume that each node has a unique address
(which can e.g. be its IP-address), and every node can select a
vertex uniformly at random from the set of all nodes (i.e., like
in the random phone call model). Additionally, a node can
store a constant number of addresses, out of which it can call
one in a future round. In our algorithm a node decides in each
round whether it chooses an address uniformly at random
or from the pool of the addresses stored before the current
round. In general, one may allow the nodes to combine these
two abilities (e.g., choose a node at random or use previous

knowledge froma probability distribution over both) to select
the next communication partner.

In our analysis, we assume for simplicity that every node
knows n exactly. However, a slightly modified version of our
algorithm also works if the nodes have an estimate of log n,
which is correct up to some constant factor. We discuss this
case in Sect. 5.

The algorithm consists of five main phases and these
phases may contain several rounds of communication. Basi-
cally there are two types of nodes in the algorithm, which we
call leaders and connectors. The algorithm is defined in the
following way:

Phase 0 Each informed node performspush in every step
of this phase. The phase consists of c log log n steps, where c
is some suitable constant. According to e.g. [23], themessage
is contained in at least log2 n many nodes at the end of this
phase, w.h.p.

Phase 1 Each node flips a coin to decide whether it will
be a leader, with probability 1/2

√
log n , or a connector, with

probability 1 − 1/2
√
log n .

Phase 2 Each connector chooses leaders by preforming
five sub-phases of pointer jumping, each for c

√
log n rounds.

At the end, all but a constant fraction of connectors will
have at least 2 leader addresses stored with high probabil-
ity. Every such connector keeps exactly 2 leader addresses
(chosen uniformly at random) and forgets all the others. A
detailed description of this phase is given below.

Phase 3Each connector opens in each roundof this phase a
communication channel to a randomly chosen node from the
list of leaders received in the previous phase. However, once
a connector receives the message, it only transmits once in
the next round usingpush communication to its other leader.
The leaders send the message in each round over all incom-
ing channels during the whole phase (i.e., the leaders send
the message by pull). The length of this phase is c

√
log n

rounds.
Phase 4Every node performs the usualpush&pull (i.e.,

median counter algorithm according to [23]) for c
√
log n

rounds. All informed nodes are considered to be in state B1 at
the beginning of this phase (cf. [23]). For a description of the
median counter algorithm of [23] see the proof of Theorem
1.

The second phase needs some clarification: it consists
of 5 sub-phases in which connectors chose leaders. In
each sub-phase, every connector performs so called pointer-
jumping [28] for c

√
log n rounds, where c is some large

constant. The leaders do not participate in pointer jumping,
and when contacted by a connector, they let it know that it
has reached a leader. The pointer jumping sub-phase works
as follow: in the first round every connector chooses a node
uniformly at random, and opens a communication channel to
it. Then, each (connector or leader) node, which has incom-
ing communication channels, sends its address by pull to

123

Breaking the log n barrier on rumor spreading 507

the nodes at the other end of these channels. In each round
i > 1 of this sub-phase, every connector calls on the address
obtained in step i−1, and opens a channel to the correspond-
ing node. Then, every node transmits over each incomming
channel the address obtained in step i−1 to the node(s) that
opened the channel(s). Clearly, at some time t each node
stores only the address received in the previous step t−1 of
the current sub-phase, and the addresses stored at the end of
the previous sub-phases.

If in some sub-phase a connector v does not receive a
leader address at all, then it forgets the address stored in the
last step of this sub-phase. In this casewe say that v is “black”
in this sub-phase. The idea of using connectors to amplify the
information propagation in graphs has already been used in
e.g. [16].

From the description of the algorithm it follows that its
running time is O(

√
log n). In the next section we show that

every node becomes informedwith probability 1−n−1−Ω(1).

4.2 Analysis of the algorithm

For our analysiswe assume the following failuremodel. Each
node may fail (before or during the execution of the algo-
rithm) with some probability O(1/2

√
log n). This implies that

e.g. n1−ε nodes may fail in total, where ε > 0 can be any
small constant. If a node fails, then it does not participate
in any pointer- or message-forwarding process. Moreover,
we assume that the other nodes do not realize that a node
has failed, even if they contact it directly. That is, all nodes
which contact (directly or by pointer-jumping) a failed node
in some sub-phase are considered to be what we call useless
(i.e., failed).

First, we give a high-level overview of our proofs. Basi-
cally, we do not consider Phases 0 and 1 in the analysis; the
resulting properties on the set of informed nodes are straight-
forward, and have already been discussed in e.g. [23]. Thus,
we know that at the end of Phase 0, the rumor is contained
in at least log2 n nodes, and at the end of Phase 1 there are
n/2

√
log n ·(1±o(1)) leaders, w.h.p. Lemma 1 analyzes Phase

2. We show that most of the connectors will point to a leader
after a sub-phase, w.h.p. To show this, we bound the proba-
bility that for a node v, the choices of the nodes in the first
step of this sub-phase lead to a cycle of connectors. If such
a cycle occurs, then after performing pointer jumping for
c
√
log n steps, v will point to a node on this cycle. Since the

probability that a node is on such a cycle is relatively low, and
we have in total 5 sub-phases, which are run independetly,
we conclude that there may be at most two sub-phases in
which an (arbitrary but fixed) connector ends up on a cycle.
Hence, each connector will point to a leader, after at least 2
sub-phases as long as no node failures occur. At this point
we do not take node failures into account. However, we will

consider node failures when the dissemination procedure is
analyzed.

InLemma2,we bound the number of nodes pointing to the
same leader. For this, we consider the layers of nodes, which
are at distance 1, 2, etc. from an arbitrary but fixed leader u
after the first step of a sub-phase. We derive an upper bound
on the total number of layers, and then bound the growth of a
layer i compared to the previous layer i−1 by standard balls
into bins techniques. From this, we obtain an upper bound
on the number of nodes pointing to u at the end, which is
polynomial in 2

√
log n , w.h.p.

In Lemma 3 we show that most of the connectors
share a leader address at the end of a sub-phase with
Ω(2

√
log n/ log n) many connectors, w.h.p. Here, we start to

consider node failures too. To show this, we compute the
expected length of the path from a connector to a leader after
the first step of a sub-phase. However, since these distances
are not independent, we applyMartingale techniques to show
that for most nodes these distances occur with high proba-
bility.

Lemma 4 analyzes then the growth in the number of
informed nodes within two steps of Phase 3. What we basi-
cally show is that after any two steps, the number of informed
nodes is increased by a factor of 2

√
log n/2, w.h.p., and most

of the newly informed nodes are connected to a (second)
leader, which is not informed yet. Thus, most connectors
which point to these leaders are also not informed. These
will become informed two steps later.

Themain theorem thenuses the fact that at the endofPhase
3 a 27

√
log n-th fraction of the nodes is informed, w.h.p. Then,

we can apply the algorithm of [23] to inform all nodes within
additional O(

√
log n) steps, w.h.p.

Now we start with the details. In the first lemma we con-
sider only one single sub-phase and assume that there are no
node failures.

For every connetor v, let r(v) be the choice of v in the first
round of a (fixed) sub-phase. Furthermore, let R(v) be the
set of nodes which can be reached by node v using (directed)
edges of the form (u, r(u)) only. That is, a node u is in R(v)

iff there exist some nodes u1, . . . , uk such that u1 = r(v),
ui+1 = r(ui) for any i ∈ {1, . . . , k − 1}, and u = r(uk).

We say that R(v) has a cycle, if there is an integer k and
nodes w1, . . . , wk ∈ R(v) exist such that wi = r(wi−1)

for any i ∈ {2, . . . , k} and w1 = wk . Clearly, if there are
no node failures, then only one of the following cases may
occur: either a leader u exists with u ∈ R(v), or R(v) has a
cycle. This holds, since every node w in R(v) has exactly
one outgoing (directed) edge (w, r(w)), and if no cycle
emerges, then we obtain a directed path whose end u must
be a leader, since otherwise there would be a further edge
(u, r(u)) (note that only leaders do not choose any nodes
at the beginning of a sub-phase). We prove the following
lemma.

123

508 C. Avin, R. Elsässer

Lemma 1 For an arbitrary but fixed connector v, the set

R(v) has a cycle with probability O

(
22

√
log n log2 n

n

)
. Further-

more, the size of R(v) is |R(v)| = O(2
√
log n log n), w.h.p.,

and |R(v)| = O(2
√
log n), with constant probability.

Before the proof we give some definitions that will be
used also in future proofs. Let P(v) be a directed path
(v, u1, . . . , uk), where u1 = r(v), ui+1 = r(ui) for any
i ∈ {1, . . . , k − 1}, and ui �= u j , v for any i, j ∈ {1, . . . , k},
i �= j . Then, r(uk) ∈ {v, u1, . . . , uk−1} with probability
k/(n − 1). Let this event be denoted by Ak . Furthermore, let
Bk be the event that r(uk) is not a leader (B1 is the event that
neither r(v) nor r(u1) is a leader). Let L be the set of leaders.

Proof (of Lemma 1) Since communication partners are
selected independently we have for k ≤ n − |L|

Pr [Ak ∧ Bk | A1 ∧ B1 . . . Ak−1 ∧ Bk−1]= n − 1 − |L| − k

n − 1
and

Pr [A1 ∧ B1] = n − 1 − |L|
n − 1

· n − |L| − 2

n − 1
.

Note that for all k ≥ n − |L|

Pr [Ak ∧ Bk ∧ A1 ∧ B1 . . . Ak−1 ∧ Bk−1] = 0

since the number of connectors is at most n − |L| and v is
assumed to be a connector too. Simple application of Cher-
noff bounds imply that |L| = n(1±o(1))/2

√
log n , w.h.p. We

condition on the event that this bound holds on |L|, and obtain
for k = c · 2√

log n log n with c being some large constant

Pr [A1 ∧ B1] · Pr [A2 ∧ B2 | A1 ∧ B1] · · · · ·
·Pr [Ak ∧ Bk | A1 ∧ B1 ∧ · · · ∧ Ak−1 ∧ Bk−1]

≤ �k
i=1

n − |L| − i−1

n − 1
(1)

≤
(
1 − |L|

n − 1

)c2
√
log n log n

(2)

≤
(
1 − 1 − o(1)

2
√
log n

)c2
√
log n log n

(3)

≤ n−3−Ω(1), (4)

whenever c is large enough. The last inequality follows from
(1 − 1/x)x ≤ 1/e for all x ≥ 1. Since Pr [|R(v)| =
k] with k > c2

√
log n log n is smaller than Pr [|R(v)| =

c2
√
log n log n], we obtain that the size of R(v) is at most

c · 2√
log n log n, w.h.p. Applying Inequality (4) with k =

c ·2√
log n , we obtain that the size of R(v) is at most c ·2√

log n ,
with some constant probability tending to 1 as c tends to ∞.

Now we prove that

Pr [R(v) contains a cycle] = O

(
22

√
log n log2 n

n

)
.

We know that

Pr [Ai | A1 ∧ B1 ∧ · · · ∧ Ai−1 ∧ Bi−1] = i

n − 1
.

Then, R(v) has a cycle, with probability less than

n−|L|−1∑
i=1

Pr [Ai | A1 ∧ B1 ∧ · · · ∧ Ai−1 ∧ Bi−1]

·Pr [A1 ∧ B1 ∧ · · · ∧ Ai−1 ∧ Bi−1]

≤
c2

√
log n log n∑
i=1

Pr [Ai | A1 ∧ B1 ∧ · · · ∧ Ai−1 ∧ Bi−1] +

n−|L|−1∑
i=c2

√
log n log n+1

Pr [A1 ∧ B1 ∧ · · · ∧ Ai−1 ∧ Bi−1]

≤
c2

√
log n log n∑
i=1

i

n − 1
+ O(n−2−Ω(1))

≤ (c2
√
log n log n)2

n
+ O(n−2−Ω(1)).

As already shown, if i > c2
√
log n log n, then Pr [A1∧B1∧

· · · ∧ Ai−1 ∧ Bi−1] = O(n−2−Ω(1)) if c is large enough. 	

We can also show the following upper bound on the num-

ber of connectors sharing the same leader address. This bound
also holds in the case of node failures, since failed nodes can
only decrease the number of connectors sharing the same
leader address.

Lemma 2 At the end of a sub-phase each connector shares
the same leader address with at most O(23.1

√
log n) other

connectors, w.h.p.

Proof For any set S of nodes, let r(S) = {v ∈ V | r(v) ∈
S}. We model the parallel process of choosing nodes in the
first round of a fixed sub-phase by the following sequential
process (that is, the first round of the sub-phase is modeled
by the whole sequence of steps of the sequential process). In
the first step of the sequential process, all connectors choose
a random node. We keep all edges between (u, r(u)) with
r(u) ∈ L , and release all other edges. Let L1 denote the
set of nodes u with r(u) ∈ L . In the i th step, we let each
node of V \∪i−1

j=0L j choose a node from the set V \∪i−2
j=0L j

uniformly at random, where L0 = L . Recall that the nodes
are not allowed to choose themselves. Then, Li is the set of

123

Breaking the log n barrier on rumor spreading 509

nodes u with r(u) ∈ Li−1, and all edges (u, r(u)) (generated
in this step) with r(u) /∈ Li−1 are released.

Note that the sequential process produces an edge distribu-
tion on the nodes of the graphwhich stochastically dominates
the edge distribution produced by the parallel process, since
in the sequential process no cycles can occur. If now S ⊂
Li−1, then the probability for a node v ∈ V \ ∪i−1

j=0L j to

choose a node in S is |S|/(|V \ ∪i−2
j=0L j | − 1). In order

to derive an upper bound on the number of nodes choos-
ing a node in S, we model the process by a balls into
bins game, in which |V \ ∪i−1

j=0L j | balls are thrown into

(|V \∪i−2
j=0L j |−1)/|S| bins uniformly at random. According

to Theorem 1 of [34] the number of nodes v with r(v) ∈ S
is at most |S| + O(log n + √|S| log n), w.h.p.

Similar to the definition of Li , for a leader u the nodes v

with r(v) = u are in set L1(u), the nodes v with r(r(v)) = u
are in set L2(u), and generally, the nodes v with r(v) ∈
Li−1(u) define the set Li (u).

Then, according to the arguments above (i.e., setting
S = Li (u)), we have |Li+1(u)| = |Li (u)| + O(log n +√|Li (u)| log n), w.h.p. We assume now that |L1(u)| =
Θ(log n) (from [34] we may conclude that |L1(u)| =
O(log n), w.h.p.). Then, for any i ≤ c · 2√

log n log n, we
assume the highest growth for |Li+1(u)|, i.e., |Li+1(u)| =
|Li (u)|+ O(

√|Li (u)| log n), where c is some constant. This
recursion yields |Li+1(u)| ≤ c(i + 1)2 log n, if c is large
enough. Then, |Lc·2√

log n log n(u)| < c322
√
log n log3 n. Since

|R(v)| = O(2
√
log n log n) for any v (cf. Lemma 1), and

assuming that |Li (u)| ≤ ci2 log n for each i , we obtain the
claim. 	

Let us fix a sub-phase. We allow now node failures (i.e.,
each node may fail with some probability O(1/(2

√
log n)),

and prove the following lemma.

Lemma 3 There are cn connectors, where c > 0 is a con-
stant, which store the addresses of at least two leaders,
and each of these leader addresses is shared by at least

Ω
(
2
√
log n

log n

)
connectors, w.h.p.

Proof First, we consider the case in which no node failures
are allowed. Then, we extend the proof.

We have shown in Lemma 1 that the length of a
path (v, u1, . . . , uk, u) from a node v to a leader u is
O(2

√
log n log n), w.h.p., where u1 = r(v), ui = r(ui−1)

for any i ∈ {2, . . . , k}, and u = r(uk). Let u be a leader, and
let Li (u) be the set of connectors which have distance i from
u after a certain (arbitrary but fixed) sub-phase of the second
phase. Furthermore, let Li (L) = ∪u∈L Li (u). For our analy-
sis, we model the process of choosing nodes in the first step
of this sub-phase by a sequential process (similar to the proof
of the previous lemma), in which first v chooses a node, then
r(v) chooses a node, then r(r(v)) chooses a node, etc. In

step i of this sequential process the i-th node ui−1 on the
path P(v) chooses a node. For some i = O(2

√
log n/ log n)

we have

Pr [v /∈ ∪i
j=1L j (L) | A1 ∧ · · · ∧ Ai−1]

≥
(
1 − |L|

n − i − 1

)i

.

Since L = O(n/2
√
log n), it follows that a node has a path

(or a cycle) P(v) of lengthΩ(2
√
log n/ log n)with probability

1 − o(1).
Additionally, observe that, as long as no node failures

occur, R(v) either contains a cycle or v ∈ ∪n−1
j=1L j (L).

According to Lemma 1, R(v) has a cycle with probabil-

ity O

(
22

√
log n log2 n

n

)
. Thus, Pr [v ∈ ∪n−1

j=1L j (L)] = 1 −
O(22

√
log n log2 n/n) and the number of nodes satisfying this

property is n(1 − o(1)), w.h.p.
Sowe obtain that, given R(v)∩L �= ∅ a node has a path of

lengthΩ(2
√
log n/ log n) to a leader with probability 1−o(1).

Hence, the expected number of such nodes is n(1-o(1)).
Now we consider node failures. A node v is considered

useless, if it fails (as described at the beginning each node
fails with probability O(1/2

√
log n)), or there is a node in

R(v), which fails. Since |R(v)| = O(2
√
log n) with con-

stant probability, there is a node in R(v) that fails with at
most some constant probability. However, these probabili-
ties are not independent. Nevertheless, the expected number
of nodes, which will not be useless and have a path of length

Ω
(
2
√
log n

log n

)
to a leader, is Θ(n).

Now, consider the followingmartingale.Letv1, . . . , vn−|L|
denote the connectors. In step j , we reveal the directed edges
and nodes from node v j to all nodes in R(v j) obtained from
a (fixed) sub-phase. That is, let X be the random variable
for the number of nodes which are not useless and have a
path of length of at least c′2

√
log n/ log n to a leader, where

c′ > 0 is some small constant. We know that E[X] = Θ(n).
Furthermore, let X0 = E[X] and define Xi as the condi-
tional expectation of X conditioned by the knowledge of the
sets R(v1), . . . , R(vi) together with all edges of the form
(u, r(u)) where u ∈ ∪i

j=1R(v j).
Clearly, X0, . . . , Xn−|L| is a martingale, and assuming

that |R(v j)| = O(2
√
log n log n) for all v j , this martin-

gale satisfies the O(2
√
log n log n)-Lipschitz condition (since

|Xi −Xi−1| = O(2
√
log n log n)). Thus, applying theAzuma–

Hoeffding inequality [32], we obtain that Θ(n) nodes are

connected to a leader by a path of lengthΩ
(
2
√
log n

log n

)
and will

not be useless, w.h.p.

We use the following observation to show that all the
connectors of on a path to a leader share the same leader
address.

123

510 C. Avin, R. Elsässer

Observation 1 If in an arbitrary but fixed sub-phase of the
second phase R(v) ∩ L �= ∅ for some connector v, then v

stores the address of a leader u at the end of this phase,w.h.p.

This observation is a simple application of the pointer
jumping algorithm (that all connectors execute in this sub-
phase) on a directed path of length |R(v)|. For a directed
path of length n, log n executions of pointer jumping will be
sufficient for the first node to point the last node.

According to Lemma 1, |R(v)| = O(2
√
log n log n), w.h.p.

so c
√
log n executions will be sufficient for every node on the

path to point to the same leader.
To conclude the proof of the lemma, a Θ(n) fraction of

the nodes store at the end of the second phase the addresses
of at least two leaders, and such a connector shares each of
these leader addresses with Ω(2

√
log n/ log n) other connec-

tors, w.h.p. 	

Now we concentrate on the third phase. Consider the set

of good connectors: connectors that stored at least two and
at most 5 different leader addresses and each leader address
stored by it is shared with at least Ω(2

√
log n/ log n) other

connectors. From Lemma 3, there are cn good connectors
with high probability. Out of good connectors, let C̃ be the
set of nodes v with the following additional property. The
first time a leader of v receives the message, v will contact
this leader in the next step, pulls the message, and in the next
step it will push the message to the other leader.

Note that a good connector v will have this property with
a constant probability (since it has a constant number of lead-
ers), independently of the other nodes. Therefore, the total
number of nodes in C̃ is Θ(n), w.h.p.

Now we have the following observation.

Observation 2 Let Ci be the set of nodes which store the
same (arbitrary but fixed) leader address after a certain sub-
sphase, and assume that |Ci | = Ω(2

√
log n/ log n). Then,

|Ci ∩ C̃ | = Θ(|Ci |), w.h.p.

The proof of this observation follows from the fact that if
two nodes share the same leader address after a certain sub-
phase, then each of these nodes will share with constant
probability a leader address obtained in some other subphase
with at least Ω(2

√
log n/ log n) other connectors. However,

the events (to share the leader address obtained from another
subphase with at least Ω(2

√
log n/ log n) other connectors)

for two arbitrary but fixed nodes is not independet. Let now
C j be some set of nodes pointing to a leader address, which
contains a node v ∈ Ci . Since |Ci |, |C j | = O(23.1

√
log n)

w.h.p. (see Lemma 2), there will be with probability at least
1 − n−2 at most 4 nodes in Ci ∩ C j . Conditioning on this,
we define for the nodes of Ci ∩ C̃ the following martin-
gale. Let Ci = {v1, . . . , v|Ci |} and let X the random variable,
which describes |Ci ∩ C̃ |. Clearly, E[X] = Θ|Ci |. Fur-
thermore, X0 = E[X], and define Xi as the conditional

expectation of X , conditioned by the knowledge of the sets
pointing to the leaders of the nodes v1, . . . , vi . However,
since only 4 nodes from Ci share the set C j of some other
leader, |Xi − Xi−1| ≤ 4, and the martingale satisfies the
4-Lipschitz condition, which leads to the statement of the
observation.

Now we are ready to show the following lemma.

Lemma 4 After the third phase the number of informed
nodes is at least n

27
√
log n , w.h.p.

Proof For a node v ∈ C̃ , let C (1)
v be the set of nodes, which

store the same leader address as the first leader of v, let C (2)
v

be defined respectively with the second leader address of v

(obtained in the same sub-phases of the second phase), and
for which we have |C (1)

v |, |C (2)
v | = Ω(2

√
log n/ log n). We

know that each node has exactly 2 leader addresses. Since
after Phase 0 at least log2 n nodes are informed w.h.p., we
may assume that at the beginning of this phase a nodew ∈ C̃
is informed, and w pushes the message exactly once. That
is, after two steps all nodes of C (j)

w ∩ C̃ are informed, where
j is either 1 or 2 (we may assume w.l.o.g. that j = 1).
Furthermore, we assume that these are the only nodes which
are informed after the second step.

Now,we show by induction that the following holds. After
2i steps, the number of informed nodes I (i) in C̃ is at least
min{2√

log n·i/2, n/27
√
log n}, w.h.p. Furthermore, there is a

partition of the set {C (j)
v ∩ C̃ | v ∈ I (i), j ∈ {1, 2}}, into the

sets E (j)(i) and F (j)(i), where E (j)(i) are the sets C (j)
v ∩ C̃

with |C (j)
v ∩ C̃ ∩ I (i)| = O(log n), and F (j)(i) are the sets

C (j)
v ∩C̃ withC (j)

v ∩C̃ ∩ I (i) = C (j)
v ∩C̃ . Roughly speaking,

the sets belonging to E (j)(i) contain some nodes, which have
just been informed in the last time step, and most of the
nodes from these sets are still uninformed. If now these nodes
perform push, and in the next step the nodes of the sets in
E (j)(i) a pull, then these nodes become informed as well.

Our assumption is that the number of sets E (j)
v (i) is

Ω(|I (i)|/ log n), w.h.p. This obviously holds before the first
or after the second step.

Assume that the induction hypothesis holds after step 2i .
We are going to show that it also holds after step 2(i + 1).
Clearly, ifU is some set of nodes which have the same leader
address after an arbitrary but fixed subphase of the second
phase, where |U | = Ω(2

√
log n/ log n), then we have |U ∩

C̃ | = Θ(|U |), w.h.p. (see Observation 2).
On the other hand, there are at least Ω(n/23.1

√
log n)

such sets U with U /∈ ∪ j=1,2F (j)(i), w.h.p., since the
largest set we can obtain has size O(23.1

√
log n), w.h.p. (cf.

Lemma 2). According to our induction hypothesis, at least
Ω(|I (i)|/ log n) and at most O(|I (i)|) of these sets are ele-
ments of E (j)(i), where v ∈ I (i).

Clearly, a node v ∈ C̃ \ I (i) will be in at most one of
these sets, w.h.p. Since any of these sets accomodates at

123

Breaking the log n barrier on rumor spreading 511

least Θ(2
√
log n/ log n) nodes from C̃ , w.h.p., the number

of informed nodes increases within two steps by at least
a factor of Θ(2

√
log n/ log2 n) � 2

√
log n/2, which leads to

|I (i + 1)| ≥ 2
√
log n·(i+1)/2, w.h.p. The induction step can

be performed as long as |I (i)| ≤ n/27
√
log n . Now we con-

centrate on the distribution of these nodes among the sets
U /∈ {E (j)

v (i) | v ∈ I (i), j ∈ {1, 2}}. Note that each such
node belongs to two sets; one of these sets is an element
of E (j)

v (i) for some v ∈ I (i), while the other one is not.
Since the total number of nodes in some set of E (j)(i) is
O(23.1

√
log n), w.h.p., we have |I (i + 1)| = O(23.1

√
log n ·

|I (i)|) = O(n/23.9
√
log n). As argued above, there are at

least Ω(n/23.1
√
log n) sets U with U /∈ {F (j)

v (i + 1) | v ∈
I (i + 1), j ∈ {1, 2}}, w.h.p., where U is some set of nodes
whichhave the same leader address after an arbitrary but fixed
subphase of the second phase, and |U | = Ω(2

√
log n/ log n).

Thus, a node v ∈ (I (i + 1) \ I (i)) ∩ C̃ is assigned to a fixed
such U with probability O(1/|I (i + 1)|). Therefore, none
of the sets E (j)

v (i + 1) will accomodate more than O(log n)

nodes from (I (i + 1) \ I (i)) ∩ C̃ , w.h.p. [34], and the claim
follows. 	

Now we are ready to prove our main theorem, which
also compares the communication overhead of the usual
push&pull algorithm of [23] to our algorithm. Note that
the bit communication complexity of [23] w.r.t. one rumor
is O(nb · log log n), w.h.p., where b is the bit length of that
rumor. We should also mention here that in [23] the authors
assumed that messages (so called updates in replicated data-
bases) are frequently generated, and thus the cost of opening
communication channels amortizes over the cost of sending
messages through these channels. If in our scenariomessages
are frequently generated, then we may also assume that the
cost of the pointer jumping phase is negligible compared to
the cost of sending messages, and thus the communication
overhead in our case would also be O(nb log log n). In our
theorem, however, we assume that one message has to be
distributed, and sending the IP-address of a node through a
communication channel is O(log n). Also, opening a channel
without sending messages generates an O(log n) communi-
cation cost.

Theorem 1 At the end of the JPP algorithm, all but O(F)
nodes are informed w.h.p., where F is the number of failed
nodes as described above. The algorithm has running time
O(

√
log n) and produces a bit communication complexity of

O(n(log3/2 n+b · log log n)), w.h.p., where b is the bit length
of the message.

Proof In the fourth phase we apply themedian counter algo-
rithm presented in [23].

For the sake of completeness, we describe this algorithm
here as given in [23]. There, each node can be in a state called
A, B, C , or D. State B is further subdivided in substates B1,

…, Bctrmax , where ctrmax = O(log log n) is some suitable
integer. At every round each node selects uniformly at ran-
dom a communication partner and executes both push and
pull. The rules are as follows:

– If a node v in state A receives the rumor only from nodes
in state B, then it switches to state B1. If v obtains the
rumor from a state C node, then it switches to state C .

– If a node v in state Bi communicates with more nodes in
some state B j with j ≥ i than with nodes in state A or
B j ′ with j ′ < i , then v switches to state Bi+1. If v gets
the rumor from a state C node, then it switches to state
C .

– Anode in stateC sends the rumor for O(log log n) further
steps. Then, it switches to state D and stops sending the
rumor.

At the beginning of Phase 4 of the JPP algorithm, all informed
nodeswill be considered in state B1 and all uninformed nodes
in state A. Recall that at the end of the third phase, there are
at least n/27

√
log n informed nodes, w.h.p. (cf. Lemma 4).

Also, the communication overhead in JPP w.r.t. the rumor is
O(n · b) in the third phase, since each connector transmits at
most twice themessage, and the number of leaders is bounded
by O(n/2

√
log n), w.h.p.

Theorem 3.1 of [23] bounds the number of rounds as
well as the message complexity of the median counter
algorithm. That is, Karp et al. show that the algorithm pro-
duces O(n log log n) message transmissions and finishes in
O(log n) rounds w.h.p. At the beginning of Phase 4, we
denote by I (t0) the set of informed nodes, and assume that
all nodes are in state B1, where |I (t0)| ≥ n/27

√
log n , w.h.p.

In the proof of Theorem 3.1 (Case 2), Karp et al. show that
“there are no players whose counters will be increased more
than some c log log n time” as long as the number of informed
nodes is less than n/ log2 n, w.h.p.3 As they mention later,
this holds no matter whether node failures are allowed or
not. To reach Ω(n/ log2 n) informed nodes starting from
Ω(n/27

√
log n) requires O(c

√
log n) rounds since (as shown

in [23]) this is what is called an exponential growth phase
for which |I (i + 1)| > (1 + ε)|I (i)|, w.h.p. Furthermore,
in the errorless case the number of steps needed to inform
all nodes–once n/ log2 n nodes are informed–is O(log log n)

(see beginning of the analysis of Case 2 in the proof of The-
orem 3.1 [23]). Thus setting the counter ctrmax to some
c′ log log n with c′ being large enough, no node will ever
enter state C before all nodes are informed and the number
of rounds until all nodes are informed is O(

√
log n).

Therefore, we may assume that at the time step when all
nodes are informed for the first time, the nodes are in some

3 Note that in [23] the authors consider arbitrary node weights, which
are 1/n for all nodes in our case.

123

512 C. Avin, R. Elsässer

states B j with j ≤ ctrmax. If the nodes are allowed to be in
state C for 2c′ log log n steps, then in each of the next rounds
the smallest j-value in B j increases by one. This holds since
if at the beginning of some time step, a node is in some state
B j , and all other nodes are in some state B j ′ orC with j ′ ≥ j ,
then all the B j -nodes switch their state to B j+1 or C in this
step. Thus, after c′ log log n steps, all nodes will be in state
C . After additional 2c′ log log n steps all nodes are finally in
state D, and they stop transmitting any messages.

If node failures are allowed, then Karp et al. show that
until the time step in which n − O(n/ log n) nodes are in
state C or D, the total number of message transmissions is
O(n log log n), w.h.p., and “the remaining error-free play-
ers can only cause O(log n) messages each”. This implies
that in the case when node failures may occur, the total num-
ber of message transmissions will not exceed O(n log log n),
w.h.p., where each message contains b bits.

Now we are able to count the bit complexity produced
in Phase 4. The total number of bits transmitted through
the communication channels—as long as less than n/ log2 n
nodes are informed—is at most n · b/ log n, since the whole
phase requires at most O(log n) steps, w.h.p., and in each
step at most bn/ log2 n bits are transmitted through the chan-
nels. Then, as explained above, after additional O(log log n)

rounds all nodes are in state D, and in each of these rounds
there can be at most nb bits transmitted in total. This
leads to a bit communication complexity (for messages) of
O(nb · log log n), w.h.p.

The communication overhead w.r.t. the addresses sent by
the nodes in the pointer jumping phase is upper bounded by
O(n

√
log n · log n), where

√
log n stands for the number of

rounds in the second phase, while the log n term describes
the bit size of a message (an address is some polynomial in
n). 	

5 Discussion–non-exact case

As mentioned in Sect. 4.1, a modified version of our algo-
rithm also works if the nodes only have an estimate of log n,
which is accurate up to some constant factor. In this case, we
introduce some dummy sub-phases between any two phases
and any sub-phases of Phase 2. Now, for a node v the length
of the i’th sub-phase of Phase 2 will be ρ2i c

√
log nv , and

between sub-phases i and i + 1, there will be a dummy sub-
phase of length ρ2i+1c

√
log nv . Here nv is the estimate of

n at node v. Accordingly, the dummy sub-phase between
Phases 1 and 2 will have length ρc

√
log nv , between Phases

2 and 3 length ρ11c
√
log nv , and between 3 and 4 length

ρ13c
√
log nv . The length of Phase 3 will be ρ12c

√
log nv ,

and that of Phase 4 will be ρ14c
√
log nv . Here ρ will be a

large constant, such that ρi � ∑i−1
j=0 ρ j for any i < 15.

Furthermore,

i∑
j=0

ρ j cmin
v∈V

√
log nv �

i−1∑
j=0

ρ j cmax
v∈V

√
log nv +

cmax
v∈V

√
log nv,

where i ∈ {1, . . . , 15}.
The role of the dummy sub-phases is to synchronize the

actions of the nodes. That is, no node will enter a phase
or sub-phase before the last node leaves the previous phase
or sub-phase. Accordingly, no node will leave a phase or
a sub-phase, before the last node enters this phase or sub-
phase. Moreover, the whole set of nodes will be together
for at least c

√
log n steps in every phase or sub-phase. This

ensures that all the phases and sub-phases of the algorithm
will work correctly, and lead to the results we have derived in
the previous section. Note that, however, the communication
overheadmight increase to some value O(n(log3/2 n+b

√
n).

References

1. Avin, C., Elsässer, R.: Faster rumor spreading: breaking the logn
barrier. In: Proceedings of the 27th International Symposium on
Distributed Computing–DISC 2013, pp. 209–223. Springer, Berlin
(2013)

2. Avin, C., Lotker, Z., Pignolet, Y.-A., Turkel, I.: From caesar
to twitter: structural properties of elites and rich-clubs. CoRR
abs/1111.3374 (2012)

3. Berenbrink, P., Elsässer, R., Friedetzky, T.: Efficient randomised
broadcasting in random regular networks with applications in peer-
to-peer systems. In: Proceedings of the 27th ACM Symposium on
Principles of Distributed Computing , pp. 155–164 (2008)

4. Berenbrink, P., Elsässer, R., Sauerwald, T.: Communication com-
plexity of quasirandom rumor spreading. Algorithmica 72(2),
467–492 (2015)

5. Censor-Hillel, K., Haeupler, B., Kelner, J., Maymounkov, P.:
Global computation in apoorly connectedworld: fast rumor spread-
ingwith nodependence on conductance. In: Proceedings of the 44th
ACM Symposium on Theory of Computing, pp. 961–970 (2012)

6. Chaintreau, A., Fraigniaud, P., Lebhar, E.: Opportunistic spatial
gossip over mobile social networks. In: Proceedings of the 1st
Workshop on Online Social Networks , pp. 73–78 (2008)

7. Chung, F., Lu, L.: Connected components in random graphs with
a given degree expected sequence. Ann. Comb. 6, 125–145 (2002)

8. Deb, S., Médard, M., Choute, C.: Algebraic gossip: a network cod-
ing approach to optimal multiple rumor mongering. IEEE Trans.
Inf. Theory 52(6), 2486–2507 (2006)

9. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker,
S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for
replicated databasemaintenance. In: Proceedings of the 6thAnnual
ACM Symposium on Principles of Distributed Computing , pp. 1–
12 (1987)

10. Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors
in sublogarithmic time. In: Proceeding of the 43rd Annual ACM
Symposium on Theory of Computing , pp. 21–30 (2011)

11. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spread-
ing. In: Proceedings of the 19th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 773–781 (2008)

12. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spread-
ing: expanders, Push vs. Pull and Robustness. In: Proceedings of

123

Breaking the log n barrier on rumor spreading 513

the 36th International Colloquium on Automata, Languages and
Programming, pp. 366–377 (2009)

13. Elsässer, R., Sauerwald, T.: On the runtime and robustness of ran-
domized broadcasting. In: Proceedings of the 17th International
Symposium on Algorithms and Computation, pp. 349–358 (2006)

14. Elsässer, R., Sauerwald, T.: The power of memory in random-
ized broadcasting. In: Proceedings of the 19th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 218–227 (2008)

15. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broad-
cast in networks. RandomStruct. Algorithms 1(4), 447–460 (1990)

16. Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor
spreading in social networks. In: Proceedings of the 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1642–1660
(2012)

17. Frieze, A.M., Grimmett, G.R.: The shortest-path problem for
graphswith randomarc-lengths.DiscreteAppl.Math. 10(1), 57–77
(1985)

18. Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a
given conductance. In: 28th International Symposium on Theoret-
ical Aspects of Computer Science, pp. 57–68 (2011)

19. Gurevich, M., Keidar, I.: Correctness of gossip-based membership
under message loss. SIAM J. Comput. 39(8), 3830–3859 (2010)

20. Haeupler, B.: Simple, fast and deterministic gossip and rumor
spreading. In: Proceedings of the 24th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 705–716 (2013)

21. Haeupler, B., Malkhi, D.: Optimal gossip with direct addressing.
In: Proceedings of the 2014 ACM Symposium on Principles of
Distributed Computing, New York, NY, PODC ’14, pp. 176–185.
ACM (2014)

22. Harchol-Balter, M., Leighton, T., Lewin, D.: Resource discovery
in distributed networks. In: Proceedings of the 18th Annual ACM
symposium on Principles of Distributed Computing, pp. 229–237
(1999)

23. Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized
rumor spreading. In: Proceedings of the 41st Annual Symposium
on Foundations of Computer Science, pp. 565–574 (2000)

24. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of
aggregate information. In: Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science, pp. 482–491
(2003)

25. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of
influence through a social network. In: Proceedings of the 9thACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 137–146 (2003)

26. Kutten, S., Peleg, D.: Asynchronous resource discovery in peer-to-
peer networks. Comput. Netw. 51(1), 190–206 (2007)

27. Kutten, S., Peleg, D., Vishkin, U.: Deterministic resource discov-
ery in distributed networks. Theory Comput. Syst. 36(5), 479–495
(2003)

28. Leighton, F.T.: Introduction to Parallel Algorithms and Architec-
tures. Morgan Kaufmann, San Francisco (1992)

29. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.:Minimum-weight
spanning tree construction in o (log log n) communication rounds.
SIAM J. Comput. 35(1), 120–131 (2005)

30. Mahlmann, P., Schindelhauer, C.: Distributed random digraph
transformations for peer-to-peer networks. In: Proceedings of the
18th Annual ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 308–317 (2006)

31. Melamed, R., Keidar, I.: Araneola: a scalable reliable multicast
system for dynamic environments. In: Proceedings Third IEEE
International Symposium on Network Computing and Applica-
tions, 2004 (NCA 2004), pp. 5–14. IEEE (2004)

32. Mitzenmacher, M., Upfal, E.: Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. Cambridge Uni-
versity Press, New York (2005)

33. Pittel, B.: On spreading a rumor. SIAM J. Appl. Math. 47(1), 213–
223 (1987)

34. Raab,M., Steger, A.: “Balls into bins”—a simple and tight analysis.
In: Proceedings of the RANDOM/APPROX. pp. 159–170 (1998)

35. Sauerwald, T.: On mixing and edge expansion properties in ran-
domized broadcasting. Algorithmica 56(1), 51–88 (2010)

123

	Breaking the logn barrier on rumor spreading
	Abstract
	1 Introduction
	1.1 Our contribution

	2 Preliminaries—rumor spreading
	3 Related work
	4 Jumping–push–pull in O(sqrtlogn)-time
	4.1 Algorithm—rumor spreading with pointer jumping
	4.2 Analysis of the algorithm

	5 Discussion–non-exact case
	References

